《有理数的乘除法》文字素材1
[例1]计算:
解:(1)(-88)×(-5)=440
(4)(-12.05)×(-0.7)=8.435关于多个有理数相乘时,应当注意:
(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(2)几个数相乘,有一个因数为0,积就为0.
(3)有理数乘法,仍符合乘法的交换律、结合律和分配律,某些题目,应用运算律,可以使运算简便.[例2]计算:
1/4
解:
=-9
[例3]计算:
2/4
解
=-6-20+21+22-(28-4)=-6-20+21+22-24=-50+43=-7
3/4
4/4
第二篇:《有理数的乘除法》文字素材2小高斯为什么算得这么快
很小的时候,我们就知道小高斯算数的故事.当高斯还在读小学时,一天,老师要求大家计算1+2+3+……+100等于多少,这本是一道数字不小的加法运算题,当别的同学还在埋头苦算时,小高斯却早在一旁看着别人做,当老师走到他身边,准备批评他时,却一下子呆住了,原来小高斯已经在小石板上写出了答案:5050,而且这个答案是正确的。
那么小高斯是怎样如此迅速地将结果计算出来的呢。原来,他利用加法的交换律,先把1与100相加,得到101;2与99相加,也得到101;再一直加下去,共有50个101,所以结果为50×101=5050.这样小高斯就巧妙地利用运算的规律达到了迅速解题的目的.其实我们在平时的运算中也会遇到很多类似的问题,如下面的例子:
分析:乍一看无从下手,若是通分势必会产生数目很大的公分母,
已经抵消了,只有首尾两项相减.
1/3
数学运算是一个化繁为简的过程,在进行运算时,已经学过的运算律,可以简化计算过程.请大家试一试寻找下面两道题的运算规律是什么。
接下来,我们再回到小高斯算数的方法,提出下面的问题:例2计算101+102+103+…+200.
分析:这道题我们也可以采用高斯算数的方法,利用加法的交换律:101+200=301,102+199=301,……共有50个301,所以结果为50×301=15050.这种做法固然可取,但是否还有别的方法呢。解设a=l+2+…+200,b=l+2+…+100,则101+102+103+…+200=a-b=201×100-101×50
2/3
=15050.
可以看出,利用这种解法计算更加简捷,这其实就是以后在高中将要学到的数列的有关知识.
数学运算中有许许多多的规律,这些规律实际上都是由我们平时十分熟悉的运算律得来的,如加法的交换律和结合律,乘法的交换律等.对于数学学习中的众多规律,只要你多注意去寻找,一定会有意想不到的收获.最后再留下两道计算题,你能找出其运算的规律吗。(1)1+3+5+7+…+101
3/3
第三篇:有理数的乘除法教案有理数的乘法教案
清河中学
徐庆东
教学目标
1.知识目标:掌握有理数的乘法法则进行熟练的运算并联系实际解决简单的的实际问题,能利用乘法运算律简化运算.
2.能力目标:培养学生的发展、观察、归纳、猜想、验证等能力.3.情感态度:经历探索有理数乘法法则及运算律的过程.重点:有理数的乘法法则.
难点:有理数的乘法法则的理解及应用.教学准备
本节课采用多媒体教学,能引起学生的兴趣,产生“要学的强烈愿望.教学设计的思路清晰、符合教学规律,学生在乐趣中学会了有理数的乘法.
本节课采用这种教学设计对学生理解和消化当堂课的知识点,起到了良好的教学效果.通过观察、实验、比较、概括,对提高学生分析问题和解决问题的能力有很大的突破.促进了学生自主学习的良好习惯和不断探究的思维空间.
运用现代化的教学手段,把图形的“静”变“动”,增强了直观性,初步培养想象能力,同时提高课堂教学的效率.这里,数形结合这一重要数学思想方法的应用起到变抽象为直观和化难为易的作用,对今后的数学学习有深远的影响.
教学过程:
一、情景导入、提出问题.问题1:
森林里住着一只小甲虫豆豆,每天它都要离开家去寻找食物.这一天早晨豆豆以每分钟3米的速度向东爬行2分钟到达觅食处,那么它现在位于家的位置的哪个方向呢。相距多少米。(动画演示)问题2:
第二天,豆豆又以每分钟3米的速度向西爬行2分钟到达觅食处,那么它现在位于家的位置的哪个方向呢。相距多少米。(动画演示)
2×3是小学学过的乘法,(-2)×3如何计算呢。这就是将要学习的有理数的乘法.二、分析探索、问题解决
比较3×2=6,(-3)×2=-6这两个算式,有什么发现。把一个因数换成它的相反数,所得的积是原来的积的相反数.观察算式找规律
此处内容需要权限查看
会员免费查看两数相乘,同号得正,异号得负,并把绝对植相乘,任何数同0相乘,都得0。
1、若a>0,b>0.
若a