大数据环境下的数据安全性探讨

学号:e41314059姓名:李俊梅专业:信息安全

一、引言

随着互联网、物联网、云计算等新兴技术的高速发展,各种智能终端、社交网络服务的大量涌现,全球数据量出现了巨幅增长。据相关数据统计,仅在2011年就达到1.8万亿gb。互联网数据中心预计到2020年全球数据将翻50倍。显而易见,真正的大数据时代已经到来。一方面,云计算技术的成熟,为这些多样化的数据提供了存储和运算的平台。与此同时,数据挖掘和人工智能等技术为大数据时代提供了信息参考,大数据的快速发展进一步扩大信息的开放程度,但是随之而带来的数据的安全性,防止数据泄露和保障数据安全已经成为我们研究的课题

二、大数据的概念与特征

大数据本身是一个较为抽象的概念,我们从表面上理解规模庞大的数据,但是随着应用的越来越广泛,对大数据研究越来越深,可以发现大数据不仅是在数量规模上庞大,而且还包括数据结构相当复杂,数据与数据之间的关联程度相当高。大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。当前,普遍较为统一对大数据特征的认识可以用4v来表达:数据规模大(volume),数据种类多(varity),数据要求处理速度快(velocity),数据价值密度低(value),概括为所谓的四v特性。这些特征让大数据即区别与传统的数据概念,又体现出大数据的复杂。大数据除了有四个特性之外,大数据时代的数据还呈现出其他三个特征。第一个特征是数据类型繁多。第二个特征是数据价值密度相对较低。第三个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。

三、大数据面临的安全挑战

大数据的广泛应用注定了大数据的安全保卫战必须是持久战。在大数据时代,各种智能终端、互联网社交服务和各种数字化存储无处不在。不得不承认,大数据已经遍布各行各业,互联网的高速发展使得获得数据十分便利,同时也给信息安全带来了巨大的挑战。当前,数据安全的形势也不容乐观,需要保护的数据量增长已经超过了数据总量的增长。首先个人隐私很容易通过互联网泄露,随着社交网络、电子商务的兴起,们之间的联系越来越依赖网络,个人的信息会分散在不同的网络位置,只要将个人的相关数据聚集起来分析,就可以很容易获取个人的相关信息,从而分析出个人的隐私数据。上升到国家层面,大数据也可能给国家安全带来隐患。但是在网络高速发展的今天,如果在大数据处理技术方面落后的话,就可能导致数据的单向性。一些发达国家诸如美国已经开始大数据研发计划,大数据技术的发展和完善有助于增强国家数据的安全性。其次,网络普及化使大数据极易受到攻击。网络的高速发展,各个行业领域利用大数据技术能实现彼此资源共享和数据互通。加之云计算技术的普及,为大数据提供了一个开放的环境,将分布在不同区域的资源进行快速整合,智能化分配,从而实现数据资源的共享。正因为大数据处于一个开放的环境中,吸引黑客对其中的有价值的数据感兴趣,比如个人的银行账户信息等成为主要攻击目标。也就是说,在当今开放的网络化社会,大数据的本身数据量庞大,而且数据之间关联性强,对于黑客而言,只要付出相对低的成本,就可以获得巨大的收益。再次,数据的非结构化对大数据存储提出新要求。在大数据之前,数据存储一般分为关系型数据库和文件服务器两种。而相对于当前的大数据来说,数据类型的多样化也使我们措手不及。如今大数据一般都采用nosql数据库存储技术,该技术具有可扩展性和可用性等优点,但该技术仍然存在诸多漏洞,没有内置足够的安全性。所以时常会发生类似于身份验证、输入验证等大量安全问题。最后,计算机技术的发展也增加了安全风险。随着计算机网络技术的发展,各种服务器、防火墙、无线路由等网络设备的更新普及,数据挖掘等新兴技术越来成熟,为大数据智能化采集以及智能化数据分析性提供极大的方便。但是,我们也必须注意到一个问题就是技术的快速发展也会相应地增加了大数据的安全风险。一方面,从大数据本身的安全性来说,自身的防护也有不完善的地方,存在着漏洞。虽然云计算对大数据提供极大的方便,但云毕竟是一个开放的环境,对大数据的安全性无法提供最大的保证;api(applicationprogramminginterface,应用程序编程接口)访问安全权限控制以及密钥生成、存储技术和数据管理方面的不足都有造成数据泄漏的可能。同时大数据他本身可以成为一个可持续攻击的载体,有大量的恶意代码存在其中很难被发现,从而达到持续隐藏性攻击的目的。另一方面,黑客攻击的技术也在逐步提高,数据挖掘和数据分析技术的原理被黑客利用作为攻击的主要技术。

隐藏内容

此处内容需要权限查看

  • 普通用户特权:8.8积分
  • 会员用户特权:免费
  • 网站代理用户特权:免费推荐
会员免费查看

通过技术措施来保护大数据的安全必然重要,但管理也很关键。大数据的管理安全策略主要有:一是规范建设。大数据建设是一项有序的、动态的、可持续发展的系统工程,一套规范的运行机制、建设标准和共享平台建设至关重要。规范化建设可以促进大数据管理过程的正规有序,实现各级各类信息系统的网络互连、数据集成、资源共享,在统一的安全规范框架下运行。二是建立以数据为中心的安全系统。基于云计算的大数据存储在云共享环境中,为了大数据的所有者可以对大数据使用进行控制,可以通过建设一个基于异构数据为中心的安全方法,从系统管理上保证大数据的安全。三是融合创新。大数据是在云计算的基础上提出的新概念,大数据时代应以智慧创新理念融合大数据与云计算,以智能管道与聚合平台为基础,提升数据流量规模、层次及内涵,在大数据流中提升知识价值洞察力。积极创造大数据公司技术融合平台,寻找数据洪流大潮中新的立足点,特别是在数据挖掘、人工智能、机器学习等新技术的创新应用融合创新。

五、结束语

大数据是信息化时代的“石油”。大数据转化为信息和知识的速度与能力将成为这个时代的核心竞争力之一,而大数据面临的安全挑战却不容忽视。只有大数据技术和大数据安全“两条腿”走路时,大数据才可以真正成为这个时代的驱动力量。